(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
++(nil, ys) → ys
++(:(x, xs), ys) → :(x, ++(xs, ys))
sum(:(x, nil)) → :(x, nil)
sum(:(x, :(y, xs))) → sum(:(+(x, y), xs))
sum(++(xs, :(x, :(y, ys)))) → sum(++(xs, sum(:(x, :(y, ys)))))
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(-(x, y), s(y)))
length(nil) → 0
length(:(x, xs)) → s(length(xs))
hd(:(x, xs)) → x
avg(xs) → quot(hd(sum(xs)), length(xs))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(s(x), y) →+ s(+(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
++(nil, ys) → ys
++(:(x, xs), ys) → :(x, ++(xs, ys))
sum(:(x, nil)) → :(x, nil)
sum(:(x, :(y, xs))) → sum(:(+'(x, y), xs))
sum(++(xs, :(x, :(y, ys)))) → sum(++(xs, sum(:(x, :(y, ys)))))
-(x, 0') → x
-(0', s(y)) → 0'
-(s(x), s(y)) → -(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(-(x, y), s(y)))
length(nil) → 0'
length(:(x, xs)) → s(length(xs))
hd(:(x, xs)) → x
avg(xs) → quot(hd(sum(xs)), length(xs))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
++(nil, ys) → ys
++(:(x, xs), ys) → :(x, ++(xs, ys))
sum(:(x, nil)) → :(x, nil)
sum(:(x, :(y, xs))) → sum(:(+'(x, y), xs))
sum(++(xs, :(x, :(y, ys)))) → sum(++(xs, sum(:(x, :(y, ys)))))
-(x, 0') → x
-(0', s(y)) → 0'
-(s(x), s(y)) → -(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(-(x, y), s(y)))
length(nil) → 0'
length(:(x, xs)) → s(length(xs))
hd(:(x, xs)) → x
avg(xs) → quot(hd(sum(xs)), length(xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
++,
sum,
-,
quot,
lengthThey will be analysed ascendingly in the following order:
+' < sum
++ < sum
- < quot
(8) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
+', ++, sum, -, quot, length
They will be analysed ascendingly in the following order:
+' < sum
++ < sum
- < quot
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
n6_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n6_0,
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
+'(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(+'(gen_0':s3_0(n6_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
++, sum, -, quot, length
They will be analysed ascendingly in the following order:
++ < sum
- < quot
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
++(
gen_nil::4_0(
n723_0),
gen_nil::4_0(
b)) →
gen_nil::4_0(
+(
n723_0,
b)), rt ∈ Ω(1 + n723
0)
Induction Base:
++(gen_nil::4_0(0), gen_nil::4_0(b)) →RΩ(1)
gen_nil::4_0(b)
Induction Step:
++(gen_nil::4_0(+(n723_0, 1)), gen_nil::4_0(b)) →RΩ(1)
:(0', ++(gen_nil::4_0(n723_0), gen_nil::4_0(b))) →IH
:(0', gen_nil::4_0(+(b, c724_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
sum, -, quot, length
They will be analysed ascendingly in the following order:
- < quot
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sum(
gen_nil::4_0(
+(
1,
n1576_0))) →
gen_nil::4_0(
1), rt ∈ Ω(1 + n1576
0)
Induction Base:
sum(gen_nil::4_0(+(1, 0))) →RΩ(1)
:(0', nil)
Induction Step:
sum(gen_nil::4_0(+(1, +(n1576_0, 1)))) →RΩ(1)
sum(:(+'(0', 0'), gen_nil::4_0(n1576_0))) →LΩ(1)
sum(:(gen_0':s3_0(+(0, 0)), gen_nil::4_0(n1576_0))) →IH
gen_nil::4_0(1)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
-, quot, length
They will be analysed ascendingly in the following order:
- < quot
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n2006_0),
gen_0':s3_0(
n2006_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n2006
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n2006_0, 1)), gen_0':s3_0(+(n2006_0, 1))) →RΩ(1)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n20060)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
quot, length
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(22) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n20060)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
The following defined symbols remain to be analysed:
length
(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_nil::4_0(
n2577_0)) →
gen_0':s3_0(
n2577_0), rt ∈ Ω(1 + n2577
0)
Induction Base:
length(gen_nil::4_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_nil::4_0(+(n2577_0, 1))) →RΩ(1)
s(length(gen_nil::4_0(n2577_0))) →IH
s(gen_0':s3_0(c2578_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(24) Complex Obligation (BEST)
(25) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n20060)
length(gen_nil::4_0(n2577_0)) → gen_0':s3_0(n2577_0), rt ∈ Ω(1 + n25770)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n20060)
length(gen_nil::4_0(n2577_0)) → gen_0':s3_0(n2577_0), rt ∈ Ω(1 + n25770)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(30) BOUNDS(n^1, INF)
(31) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
-(gen_0':s3_0(n2006_0), gen_0':s3_0(n2006_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n20060)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
sum(gen_nil::4_0(+(1, n1576_0))) → gen_nil::4_0(1), rt ∈ Ω(1 + n15760)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(36) BOUNDS(n^1, INF)
(37) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
++(gen_nil::4_0(n723_0), gen_nil::4_0(b)) → gen_nil::4_0(+(n723_0, b)), rt ∈ Ω(1 + n7230)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(39) BOUNDS(n^1, INF)
(40) Obligation:
TRS:
Rules:
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
++(
nil,
ys) →
ys++(
:(
x,
xs),
ys) →
:(
x,
++(
xs,
ys))
sum(
:(
x,
nil)) →
:(
x,
nil)
sum(
:(
x,
:(
y,
xs))) →
sum(
:(
+'(
x,
y),
xs))
sum(
++(
xs,
:(
x,
:(
y,
ys)))) →
sum(
++(
xs,
sum(
:(
x,
:(
y,
ys)))))
-(
x,
0') →
x-(
0',
s(
y)) →
0'-(
s(
x),
s(
y)) →
-(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
-(
x,
y),
s(
y)))
length(
nil) →
0'length(
:(
x,
xs)) →
s(
length(
xs))
hd(
:(
x,
xs)) →
xavg(
xs) →
quot(
hd(
sum(
xs)),
length(
xs))
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
++ :: nil:: → nil:: → nil::
nil :: nil::
: :: 0':s → nil:: → nil::
sum :: nil:: → nil::
- :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s
length :: nil:: → 0':s
hd :: nil:: → 0':s
avg :: nil:: → 0':s
hole_0':s1_0 :: 0':s
hole_nil::2_0 :: nil::
gen_0':s3_0 :: Nat → 0':s
gen_nil::4_0 :: Nat → nil::
Lemmas:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil::4_0(0) ⇔ nil
gen_nil::4_0(+(x, 1)) ⇔ :(0', gen_nil::4_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(n6_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(42) BOUNDS(n^1, INF)